以下是小编帮大家整理的考研数学概率部分复习建议,本文共5篇,供大家参考借鉴,希望可以帮助到您。
篇1:考研数学概率部分复习建议
考研数学概率部分复习建议
的考试大纲已经出炉,大纲概率部分和完全没有区别,所以考生在复习的时候可以按照既定计划进行复习即可。概率具体来说:
第一、二章是基础,很少单独命题,经常结合后面的章节进行考察,但是这两章也要理解的很深刻,因为,这部分内容理解透彻了,后面内容就更容易掌握了。
我们要重点掌握二维随机变量的概率分布、边缘分布、条件分布、独立性等概念,要把定义和对应计算公式掌握的很熟练。另外,数学期望,方差,协方差,相关系数等数字特征的概念及计算公式也要重点复习,因为这几个概念是每年必考,并且考试主要考计算。最后,这部分难点是多维随机变量的函数的分布,这个考点是最近几年每年必考的,并且主要以大题的形式出现,虽然是难点,但是方法还是比较固定的,掌握每种题型的方法。在《全国硕士研究生入学统一考试数学考试大纲配套强化指导》概率的第三章随机变量函数部分,给出了详细的解题步骤,考生可参看。另外做几道题巩固一下就没问题了。
大数定律和中心极限定理不是考试的重点,考纲的要求是了解,所以掌握定理的'条件和结论即可。
统计部分的内容是同学复习的一个难点,一直以来得分率不高,实际上这部分内容相对来说题型很固定,都是基本定义和定理的推导,所以考生不能放弃,复习的重点是弄清楚三大分布的典型模式,几个统计量的分布。点估计是这部分内容的重难点,经常会考解答题。在《全国硕士研究生入学统一考试数学120种常考题型精讲》中,给出了这类题目的考查方式。而统计量的评选标准中的无偏估计要重点复习,而有效性和相合性了解即可。区间估计和假设检验这么多年考的比较少,所以也是了解一下,找几个小题做一下就行了。
另外大家需要注意由于数学三和数学四合并,09年和都是以填空题的形式考察了数理统计部分的内容,但是之前数三是经常考统计解答题了,所以今年复习的时候,一定要重点复习一下统计部分的大体,要将历年真题好好做做。
。篇2:考研数学 概率部分复习指导
考研数学 概率部分复习指导
网友:概率是比较难的,有什么好的方法来学概率?
费允杰:我不知道这位考生是不是马上就要考试了,如果马上就要考试了,我可以直接说学概率的最后阶段,就是如何把概率的章节之间弄清楚。如果还有别的一些考生,比如后面才去考试,我就可以说一说学概率的三个阶段具体是什么。先说第一个阶段,就是学习初期了。主要着眼于背一些公式,把公式理解了,把书后面的题做一做。这是最基本的阶段,这是本科教学要达到的目的。第二个阶段就要准备去考研了,就要理解公式本身的含义,而且要解决一些比较难一点的题。不管是填空题、选择题都要能够解出大部分的。到了最后就不仅仅是要理解每个公式的含义,还要解考研中具体的题,还要解决章节之间的关系。公式是在某一个节一内的,比如说在概率论第一章所学到的随机事件,把二维随机事件看作是两个交集的话,可以看作是第一章里两个随机交集的乘法方式计算,这样比较方面。另外在二维随机事件里所提到的边缘分布就是第一章里面的全概公式,像这些公式之间的关系一定要弄清楚。刚才这位学员正好是问到最后这个阶段应该怎么去学习,其实只要把章节之间的关系弄清楚,所谓概率难就不难了。
网友:我是考数一的,现在数理统计的公式太多了,到了冲刺阶段应该怎么办呢?
费允杰:其实我在讲考研数学的课当中从去年的暑假班到今年的暑假班,所有学生在上我的课之前总是提这个问题,数列统计的公式太多了,而且一看到式子头都大,不知道它的意思,不知道该怎么用它。其实数理统计部分,大家最头疼的是四个分布,正态分布、x的平方、t分布、F分布,这四个分布是学数理统计中最头疼的部分,但是我们要注意考试当中考什么。在考这四个分布时只会考这四个分布的自变量的来源以及它们图形的.对称性,而自变量的来源是很简单的。比如说X的平方的分布它的自变量无非就是n个独立的标准正态分布的平方和,至于别的分布我不用去赘述,大家会觉得很简单。再一个是图形的对称性,大家都知道正态分布和t分布是关于y轴对称的,而F分布和x的平方的分布并没有这个关系,因此我们在计算区间估计以及假设检验时就要根据不同图形的对称性而取不同位置的分位数,这样就很简单地把这四大分布掌握住。我们可能还想得起来这四大分布t分布、x的平方的分布及其复杂的概率分布,但是这些是考试中所不考的,所以一定要看清楚历年的考题在考什么,这个东西在大纲里是不会专门告诉你的,但是我们去研究历年的考题就会发现它是不考的。
网友:我是理工类的考生,概率部分是不是以期望和点估计为主?
费允杰:首先我要纠正一下这位考生的观点,期望这个概念是在概率部分的,点估计是在统计部分的。而整个概率统计部分的考试统计部分本来考的就少,所以要说以点估计为主这肯定是不正确的。另外还有一个期望,其实在历年的考题里大题都会牵扯到期望,但是不能说重点就考期望,还牵扯到方差等等。所以不能说期望就是它的重点。在整个概率统计当中应该把握的重点应该是二维随机变量、数字特征,这两部分在概率的统计当中都是很有可能要出大题的,因此这个才是我们的重点。至于说数理统计部分统计部分的重点是不是点估计其实也不是。因为点估计每次考试最多出填空题或者是选择题,即使是大题的话,占分也不多,真正占分多的是自然估计,大家可以看一下历年由考试中心所出的考试样卷,在样卷当中如果是概率部分的话都出在二维随机变量。
。篇3:考研数学概率论数理统计复习建议
考研数学概率论数理统计复习建议
20考研数学大纲9月14日已经正式出炉,与的大纲相比概率论与数理统计部分数三稍有变化,考生们前一阶段参照去年的大纲复习是非常明智的。在考研数学的三个学科(高等数学、线性代数、概率论与数理统计)中,概率论与数理统计的考查重点与命题思路是变化较少的,题目难度也是较低的,但得分情况却不是很理想,这反映出考生们的复习方法存在一定的偏差。下面我就概率论与数理统计部分的应试要点做一些归纳。
先说说这部分的考查特点,也是部分考生拿分较少的首要因素。从历年的考题来看,概率论与数理统计这部分内容考查单一知识点比较少,即使是填空题和选择题。大多数试题是考查考生的理解能力和综合应用能力,考生要能够灵活地运用所学的知识建立正确的概率模型,综合运用极限、连续函数、导数、极值、积分、广义积分以及级数等知识去解决问题。
其次说说考生们比较头疼的古典型概率与几何型概率。古典型概率以考小题为主,不是考试的重点却是难点,考生需要不重复且不遗漏地将复合事件的样本数目计量清楚,对逻辑推理能力有较高的要求。几何型概率原则上只有理工科考,是数学一考查的对象,数学三虽然明确写在大纲里,还没有考。几何概率的.模式,就是一个事件发生的概率是等于这个事件的度量与整个样本空间度量的比。这个度量的话,一维空间指的是长度,二维空间指的是面积,三维空间指的是体积。所以几何概率指的是长度的比、面积的比和体积的比,重点是面积的比,即二维的情况。
接着说说这部分考查的重点内容:一维与二维随机变量的分布与数字特征。这部分内容较多,有离散型随机变量、连续型随机变量还有介于两者之间的随机变量,有联合分布、边缘分布还有条件分布,有期望、方差还有协方差。这部分的关键是抓住分布函数这个“牛鼻子”,概率密度与概率分布在某种意义上都是它的“分身”。这部分重点中的难点是随机变量函数的分布。
最后说说数理统计部分,这部分内容很多考生不知其原委。数理统计部分的考查重点是矩估计、最大似然估计,这部分内容考生粗看课本感觉有相当的困难,好在其操作都有固定的方法跟套路。第六章的基本概念目前考得比较多的。第七章有三个内容,分别是点估计、区间估计和估计量的评选标准。考得比较多的有关点估计的两种方法,分别是矩法和最大似然法。估计量的评选标准、置信区间和假设检验只有数一做要求,估计量的第一个评选标准无偏性是考试的重点,它结合数字特征经常命题,数学一的同学还是要重视的。置信区间和假设检验的考试频率是非常低的,尤其是假设检验,在数学仅考过一道题,后来就没有考过,第八章不作为重点。
( 考研) ■篇4:考研数学概率复习要点
考研数学概率复习要点归纳
考研数学的概率部分也是考查的重点所在,下面将概率中的复习重点逐一归纳如下,以方便20的考生对照复习。一、随机事件与概率
重点难点:
重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式
难点:随机事件的概率,乘法公式、全概率公式、Bayes公式以及对贝努利概型的事件的概率的计算
常考题型:
(1)事件关系与概率的性质
(2)古典概型与几何概型
(3)乘法公式和条件概率公式
(4)全概率公式和Bayes公式
(5)事件的独立性
(6)贝努利概型
二、随机变量及其分布
重点难点
重点:离散型随机变量概率分布及其性质,连续型随机变量概率密度及其性质,随机变量分布函数及其性质,常见分布,随机变量函数的分布
难点:不同类型的随机变量用适当的概率方式的描述,随机变量函数的分布
常考题型
(1)分布函数的`概念及其性质
(2)求随机变量的分布律、分布函数
(3)利用常见分布计算概率
(4)常见分布的逆问题
(5)随机变量函数的分布
三、多维随机变量及其分布
重点难点
重点:二维随机变量联合分布及其性质,二维随机变量联合分布函数及其性质,二维随机变量的边缘分布和条件分布,随机变量的独立性,个随机变量的简单函数的分布
难点:多维随机变量的描述方法、两个随机变量函数的分布的求解
常考题型
(1)二维离散型随机变量的联合分布、边缘分布和条件分布
(2)二维离散型随机变量的联合分布、边缘分布和条件分布
(3)二维随机变量函数的分布
(4)二维随机变量取值的概率计算
(5)随机变量的独立性
四、随机变量的数字特征
重点难点
重点:随机变量的数学期望、方差的概念与性质,随机变量矩、协方差和相关系数
难点:各种数字特征的概念及算法
常考题型
(1)数学期望与方差的计算
(2)一维随机变量函数的期望与方差
(3)二维随机变量函数的期望与方差
(4)协方差与相关系数的计算
(5)随机变量的独立性与不相关性
中国大学网考研信息。篇5:考研数学概率复习要点
2014考研数学概率复习要点归纳
一、随机事件与概率
重点难点:
重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式
难点:随机事件的概率,乘法公式、全概率公式、Bayes公式以及对贝努利概型的事件的概率的计算
常考题型:
(1)事件关系与概率的性质
(2)古典概型与几何概型
(3)乘法公式和条件概率公式
(4)全概率公式和Bayes公式
(5)事件的独立性
(6)贝努利概型
二、随机变量及其分布
重点难点
重点:离散型随机变量概率分布及其性质,连续型随机变量概率密度及其性质,随机变量分布函数及其性质,常见分布,随机变量函数的分布
难点:不同类型的随机变量用适当的概率方式的描述,随机变量函数的分布
常考题型
(1)分布函数的概念及其性质
(2)求随机变量的分布律、分布函数
(3)利用常见分布计算概率
(4)常见分布的逆问题
(5)随机变量函数的分布
三、多维随机变量及其分布
重点难点
重点:二维随机变量联合分布及其性质,二维随机变量联合分布函数及其性质,二维随机变量的'边缘分布和条件分布,随机变量的独立性,个随机变量的简单函数的分布
难点:多维随机变量的描述方法、两个随机变量函数的分布的求解
常考题型
(1)二维离散型随机变量的联合分布、边缘分布和条件分布
(2)二维离散型随机变量的联合分布、边缘分布和条件分布
(3)二维随机变量函数的分布
(4)二维随机变量取值的概率计算
(5)随机变量的独立性
四、随机变量的数字特征
重点难点
重点:随机变量的数学期望、方差的概念与性质,随机变量矩、协方差和相关系数
难点:各种数字特征的概念及算法
常考题型
(1)数学期望与方差的计算
(2)一维随机变量函数的期望与方差
(3)二维随机变量函数的期望与方差
(4)协方差与相关系数的计算
(5)随机变量的独立性与不相关性
文档为doc格式