下面是小编整理的石油化工压力管道破坏与无损检测方式论文,本文共3篇,欢迎阅读分享,希望对大家有所帮助。

篇1:石油化工压力管道破坏与无损检测方式论文
石油化工压力管道破坏与无损检测方式论文
摘要:伴随当前我国社会经济发展速度不断提升,我国石油化工产业的发展水平和质量都取得了明显成绩,其中对石油化工压力管道在使用过程中会产生损坏问题,在对管道的维护工作当中,需要使用到无损检测技术,保证石油管道使用和工作的安全性。
关键词:石油化工;压力管道;无损检测
在石油化工压力管道的运用过程当中,经常会受到施工工艺、环境以及材质等方面因素的影响,造成了管道时常出现疲劳、腐蚀以及脆性等不同形式的损坏,进而造成了管道安全运行工作受到了非常大的危害。当前我国在石油化工设备的配备方面,已经步入了世界前列发展水平,尤其是在最近几年的发展过程中,对所铺设的各种管道类型发展非常迅速,但是在化工压力管道设计、制造以及运行管理工作当中还是存在一定的问题,因此,压力管道经常会产生安全性事故,给化工企业的发展带来不良影响。通过对无损检测技术的有效运用,可以在最大限度上消除了管道内部的安全隐患,同时这也是有效维护工业正常生产和发展的有效途径。
1压力管道破坏形式
1.1腐蚀破坏
腐蚀破坏主要表现在以下几个方面:1)点腐蚀问题,这种腐蚀问题在产生损坏的位置上通常不容易发现,基本上都分布在焊缝或者是受热的区域;2)缝隙腐蚀,在受到了缝隙溶液渗透和阻碍性因素的影响,造成了管道内部很大部分都受到了腐蚀,基本上都产生在焊接存在缺陷的部分;3)应力腐蚀,在压力管道受到了外力作用下,其中在抗腐蚀性介质上产生影响造成了破坏的问题,这种腐蚀问题经常产生在奥氏体不锈钢的焊接部分,并且这种腐蚀具有一定的隐蔽性,但是实际产生的破坏能力比较明显;4)氢腐蚀问题,在氢气渗入到了金属缝隙当中,造成了金属和氢气之间形成了反应,造成了腐蚀的问题。
1.2脆性破坏
对管道的脆弱性破坏和管道处于的工作环境有着比较明显的联系,通过对管道实际工作过程中所产生的具体问题和工作环境的分析之后,从中可以总结出管道材质存在比较明显的破坏性,产生这一问题的主要原因就是管道在工作过程当中,材料本身缺少充分的适应性。所以,在进行石油化工压力管道的设计工作中,必须要保证压力管道的整体使用性能。
2压力管道的无损检测方式
2.1射线检测
射线检测,主要是通过各种不同类型的射线类型,向管道材料的外部进行照射,在照射的过程当中分析射线发生的强度递减或者是递增的变化,对管道材料内部产生问题的部分进行准确的判断。在照射过程当中主要使用到的是射线照相法、X射线照射法以及其他特殊类型射线的检测方式。在射线照射过程中,主要是将射线发射位置在管道壁的表面,通过对检测的相片当中的产生不同的感光程度,对管道材料内部可能产生问题区域的大小或者是形状类型等方面进行准确的分析,通过X射线照射的方式,对管道内部材料的.检测相对比较准确,其中在射线的发射过程中会对射线有一定的吸收能力,同时对X射线的穿过管道材料本身的时候,对产生缺陷部分射线强度的变化来判断管道的问题具体情况。
2.2超声检测
超声检测技术在当前我国石油管道的检测工作中,有着非常广泛的作用,属于一种高效管道无损检测技术,在我国化工产业的发展过程中起到了保障作用。在超声检测技术当中主要包含了反射法、透射法以及共振法等多种不同方式。其中共振检测方式是无损检测中关键技术原理,在检测工作中,通过检测设备,向管道材料表面发射超声波,并且还需要将所发射超声波的强度,控制在管道外表面材质厚度的两倍左右,然后通过超声检测,向管道上发射超声波,与材料之间形成一种共振模式,通过声音频率的振动强度检测,对管道故障进行准确检测,通过这种方法可以准确计算出管道材料的具体厚度。在对管道边缘比较难检测的部位上,使用投射法是一种有效的检测方式,对发射探头或者是接收探头衔接部位进行测试,通过发射超声波的形式,在管道材料表面观察超声波能量的具体变化,通过检测之后发现被检测的管道的材质上出现问题,则通过超声波检测之后,整体信号的强度就会变强,同时在探头衔接部分的位置上,可能会产生对超声波信号的准确接收问题。
2.3磁粉检测
磁粉检测技术主要是结合了磁粉在管道材料上的聚集情况,对材料表面产生的问题进行判断,在缺陷产生的磁通密度和漏磁磁场强度成正相关的关系,通过这种方式可以有效地判断出磁粉实际分布强度和缺陷部分的存在联系;可以从缺陷位置的磁粉分布的位置、尺寸以及性质方面进行准确的判断。在进行磁粉检测过程当中,需要充分控制好材料避免的粗糙程度,然后需要对交流、直流电流进行合理的选择与运用,最后需要向轴向和纵向磁化部分进行准确的分析,避免在监测工作当中产生遗漏问题。
3结束语
通过对石油化工管道的破坏形式以及无损检测技术的分析和探讨,可以总结出在石油化工管道的损坏形式上,基本上是以腐蚀问题为主。在进行管道的无损检测过程当中,需要针对不同区域位置的损坏问题,选择出相应的管道损坏检测技术,以此来保证管道的整体质量。
参考文献
[1]辛明亮,张术宽,杨波,等.无损检测技术在塑料制压力管道检验中的应用[J].广州化工,,(13):11-13.
篇2:氨制冷压力管道焊接接头质量检测探讨论文
摘要:氨制冷系统压力管道主要应用于冷冻业,其中压力管道是设备安全监管的核心内容,而影响管道安全的是焊接接头的质量,本文主要是对氨制冷压力管道焊接接头进行缺陷及显微组织检测,分析焊接缺陷产生的原因,以及对管道安全的危害,并提出提高氨制冷管道焊接质量的建议。
关键词:氨;制冷;压力管;焊接;质量;检测;分析
1氨制冷压力管道结构和技术性能
氨制冷系统主要是由螺杆压缩机组、高效卧式冷凝器、储氨器、排液桶、低压循环桶、屏蔽氨泵、中间冷却器、吊顶冷风机、集油器、紧急泄氨器、高效卧式蒸发器、氨液分离器等组成。氨制冷压力管道主要用于输送氨液和氨液,是通过氨泵进行加压强制供应,在连接低压排液桶到蒸发器,然后回到冷凝器中,形成一个封闭循环系统。所以氨制冷压力管道很重要,它承受着压力、温度、载荷的随时变化。氨制冷压力管道主要是由安全管道、热氨管道、吸气管道、液体管道、油管道、平衡管道、放空管道、排液管道等组成的。
篇3:氨制冷压力管道焊接接头质量检测探讨论文
由于我国的氨制冷压力管道有的已经使用很多年了,其设计、安装、使用、检验等安全监督管理中存在很多问题。尤其是管道焊接接头的缺陷可能会导致冷库的氨气出现泄漏情况,应该正确分析氨制冷系统压力管道的焊接缺陷及发展,要确保管道制造、安装上防止缺陷,还要对已安装上的进行检查,及时发现缺陷,方便对管道的实效问题进行分析、剩余寿命预测和风险预测等。要对氨制冷系统中的焊接接头进行质量检测和性能分析,使用线切割设备在管道的接头处切下焊接接头检测试样。各试样的焊缝位于式样的中间,两端为母材,对切下来的焊接接头检测试样纵向截面按照规定要求,制成金相试样。通过相应的测试仪检测宏观焊接缺陷,在使用4%的硝酸酒精对焊接接头进行浸蚀,并通过扫描电镜检测显微组织。
3氨制冷压力管道焊接接头分类
为了给错边量、热处理、无损检测、焊缝尺寸等有针对性的提出要求,可以将接头分为四类,一是圆筒部分的纵向接头、球形封头与圆筒连接的环向接头、各种凸形头中的接头、嵌入管与壳体对接处的接头,这种接头所受的应力很大,所以在焊接时一般采用双面焊或者是要保证全部焊透才可以。二是壳体部分的环向接头、锥形封头与接管连接的接头、法兰与接管的接头,这种接头的焊法可以采用双面焊的对接焊缝,也可以用带有衬垫的单面焊,进行焊接。三是平盖、管板与圆筒非对接连接的接头、法兰与壳体、接管连接的接头等,这种焊接的受到的应力很小,一般都是用角焊缝连接,但是对于高压容器或是有剧毒介质的容器和低温容器就应该采取全焊透的发生进行焊接。四是接管、凸缘、补强圈等与壳体进行焊接,这种焊接主要是接管与容器的交叉焊缝,受力条件差,存在很大的应力。在后壁容器中这种焊缝的拘束很大,残余应力也很大,在使用时很容易产生裂纹等缺陷,所以要采取全焊透的方式,对接头进行焊接,对于低压容器应采用局部焊透的单面或双面角焊。
4焊接接头缺陷检测及分析
可以通过扫描电镜和能谱检测,发现焊接接头中的形状、尺寸、未熔合、未焊透、裂纹、杂质、孔穴等问题。对于焊接接头来说多少都会存在形状和尺寸的不良缺陷,主要以错边、角度偏差等的形成出现,造成这种尺寸缺陷的原因是安装对接的两个管道在进行焊接时没有对正,出现了一些偏差,会导致焊缝处存在很大的应力,可能会造成裂痕,漏氨等现象。有很多情况都是未熔合和未焊透的缺陷,主要是焊接的时候热输入太低,坡口边缘没有充分的融化,而没融合的地方会出现很大的应力,导致使用过程中出现裂痕,未焊透焊接接头会使使用强度降低,如果管道中有动载荷存在时,缺陷对焊缝的疲劳强度将有很大的影响。当有焊接时有物体夹杂在焊缝处,在使用过程中,可能会使裂痕扩展破坏,当夹杂物的尺寸很大,并且与外界连接的时候,会造成氨制冷剂进入焊缝之中,可能会使管道中的颗粒进入设备中,影响质量设备的正常运行。在焊接时,熔池的剧烈搅动会使坡口附近的腐蚀产物卷入熔池内部,凝固以后,熔池内的氧化物留在焊缝中,这对这种问题,就是要在焊接前清除坡口附近的腐蚀产物,或者在管道出现腐蚀以前进行焊接就可以有效地避免焊缝夹杂的出现。孔穴的缺陷的形状是不同的,但是形成的原理是一致的,就是在焊接的时候,熔池内的气体没有及时的溢出,残留在焊缝中形成的孔穴。另外当焊条、焊剂的够干,被焊的金属表面有锈、油污、或者是杂质,焊接区域保护不佳,都会出现孔穴现象,只是出现孔穴的大小程度不同。这些孔穴的出现会降低焊缝的致密性,减少焊缝的有效厚度。如果只是单个的.孔穴对焊接质量的危害还不是很大,但是如果是很多的孔穴,会在负载的作用下相互连通,就会使应力区变大,由于产生很严重的应力,在使用过程中可能会导致裂纹的扩展。裂纹是由于焊接不良产生的缺陷,在使用时,由于应力的作用,裂纹会逐渐的变大。由于裂纹是呈扁平形状的,当加载方向垂直于裂纹平面时,裂纹的两端会出现很大的应力,导致脆性断裂。裂纹会出现缺口效应,很容易出现三向应力状态,导致裂纹的失稳和扩展。焊接裂纹是在管道内部表面开始的,只是定期的检查是发现不了的,具有很强的隐蔽性,所以对管道造成了很大的潜在威胁,管道焊接接头存在裂缝,这种裂缝是在错边结合处出现的,并且向内部延伸,裂纹会承受很大的载荷,在缺口处导致三向应力状态,使裂纹进一步扩展。
5改进建议
焊接工艺不合理会直接导致焊接缺陷产生,所以要根据管道的实际情况进行焊接工作,防止出现未熔合和未焊透的情况发生,在焊接的时候,一定要遵守焊接工艺要求,减少由于操作失误产生的错边、固体夹杂物及孔穴缺陷的出现,可以有效的防止裂纹的萌生。对新安装的管道进行全面的焊接质量检查,严格按照规定执行,同时还应该加强安全监督管理和定期检查工作。人们不断的应用新技术,以便于及早的发现缺陷,并及时的消除安全隐患,防止事故的发生。另外还应该加强对管道焊接质量的控制,根据国家标准要求采用氩孤焊封底,手工电弧焊盖面的焊接方法,同时还应该加强对焊接操作工人的技能培训。结束语如今人们的生活水平越来越好,所以制冷设备的应用也越来越广泛,这些制冷设备主要是满足人们的需求,但是制冷设备的安全性却使人堪忧,如今我国已经发生多起氨制冷压力管道泄漏事件,甚至是导致人员的伤亡,对国家和社会带来了严重的影响,所以我们应加强对氨制冷设备的管理,保证制冷设备正常可靠的运行。
参考文献:
[1]金晓军,霍立兴,张玉凤.X65管线钢焊接接头的显微组织和低温韧性研究[J].焊管,2002(6).
[2]陆至羚,柳建华,张良,张慧晨,杨敏,翁晶凯.氨水吸收式制冷系统性能与精馏性能试验分析[J].流体机械,2015(4).
[3]刘海清,张昆,罗元生,张鸿雁.WH530钢在低温工况下的焊接试验[J].焊接,2003(2).
文档为doc格式