下面是小编整理的WorldWind系列十四:DEM数据加载和应用――以SRTM为例(下),本文共10篇,欢迎您能喜欢,也请多多分享。

篇1:WorldWind系列十四:DEM数据加载和应用――以SRTM为例(下)
使用了TerrainAccessor.cs类120行代码
public virtual TerrainTile GetElevationArray(double north, double south, double west, double east, int samples)
{
TerrainTile res = null;
res = new TerrainTile(null);
res.North = north;
res.South = south;
res.West = west;
res.East = east;
res.SamplesPerTile = samples;
res.IsInitialized = true;
res.IsValid = true;
double latrange = Math.Abs(north - south);
double lonrange = Math.Abs(east - west);
float[,] data = new float[samples,samples];
float scaleFactor = (float)1/(samples - 1);
for(int x = 0; x < samples; x++)
{
for(int y = 0; y < samples; y++)
{
double curLat = north - scaleFactor * latrange * x;
double curLon = west + scaleFactor * lonrange * y;
//关键,获取瓦片所有样本点的高程值
data[x,y] = GetElevationAt(curLat, curLon, 0);
}
}
res.ElevationData = data;
return res;
}
关键代码:data[x,y] = GetElevationAt(curLat, curLon, 0);
GetElevationAt;在TerrainAccessor.cs是抽象方法,真正实现是在TerrainAccessor的子类NltTerrainAccessor中重载实现的。
120行 public override float GetElevationAt(double latitude, double longitude)
{
return GetElevationAt(latitude, longitude, m_terrainTileService.SamplesPerTile / m_terrainTileService.LevelZeroTileSizeDegrees);
}
TerrainAccessor对象哪里来的(即:在哪完成初始化和传入的?)
ConfigurationLoader.cs的Load()方法的97行代码:
TerrainAccessor[] terrainAccessor = getTerrainAccessorsFromXPathNodeIterator(worldIter.Current.Select(“TerrainAccessor”),
System.IO.Path.Combine(cache.CacheDirectory, worldName));
World newWorld = new World(
worldName,
new Microsoft.DirectX.Vector3(0, 0, 0),
new Microsoft.DirectX.Quaternion(0, 0, 0, 0),
equatorialRadius,
cache.CacheDirectory,
(terrainAccessor != null ? terrainAccessor[0] : null)//TODO: Oops, World should be able to handle an array of terrainAccessors
);
然后通过World对象传入到QuadTileSet类中的。
我们看看getTerrainAccessorsFromXPathNodeIterator方法如何完成完成TerrainAccessor对象。
注意:该方法返回值为TerrainAccessor[],是个数组,为什么呢??(请关注我下一篇文章)
2078行
getTerrainAccessorsFromXPathNodeIterator(XPathNodeIterator iter, string cacheDirectory)代码
private static TerrainAccessor[] getTerrainAccessorsFromXPathNodeIterator(XPathNodeIterator iter, string cacheDirectory)
{
System.Collections.ArrayList terrainAccessorList = new System.Collections.ArrayList();
//下面是读取DEM配置XML,并根据配置信息创建TerrainTileService对象和TerrainAccessor对象
while(iter.MoveNext())
{
string terrainAccessorName = iter.Current.GetAttribute(“Name”, “”);
if(terrainAccessorName == null)
{
// TODO: Throw exception?
continue;
}
XPathNodeIterator latLonBoxIter = iter.Current.Select(“LatLonBoundingBox”);
if(latLonBoxIter.Count != 1)
{
// TODO: Throw exception?
continue;
}
double north = 0;
double south = 0;
double west = 0;
double east = 0;
latLonBoxIter.MoveNext();
north = ParseDouble(getInnerTextFromFirstChild(latLonBoxIter.Current.Select(“North”)));
south = ParseDouble(getInnerTextFromFirstChild(latLonBoxIter.Current.Select(“South”)));
west = ParseDouble(getInnerTextFromFirstChild(latLonBoxIter.Current.Select(“West”)));
east = ParseDouble(getInnerTextFromFirstChild(latLonBoxIter.Current.Select(“East”)));
TerrainAccessor[] higerResolutionSubsets = getTerrainAccessorsFromXPathNodeIterator(
iter.Current.Select(“HigherResolutionSubsets”),
Path.Combine(cacheDirectory, terrainAccessorName));
XPathNodeIterator tileServiceIter = iter.Current.Select(“TerrainTileService”);
if(tileServiceIter.Count == 1)
{
string serverUrl = null;
string dataSetName = null;
double levelZeroTileSizeDegrees = double.NaN;
uint numberLevels = 0;
uint samplesPerTile = 0;
string dataFormat = null;
string fileExtension = null;
string compressionType = null;
tileServiceIter.MoveNext();
serverUrl = getInnerTextFromFirstChild(tileServiceIter.Current.Select(“ServerUrl”));
dataSetName = getInnerTextFromFirstChild(tileServiceIter.Current.Select(“DataSetName”));
levelZeroTileSizeDegrees = ParseDouble(getInnerTextFromFirstChild(tileServiceIter.Current.Select(“LevelZeroTileSizeDegrees”)));
numberLevels = uint.Parse(getInnerTextFromFirstChild(tileServiceIter.Current.Select(“NumberLevels”)));
samplesPerTile = uint.Parse(getInnerTextFromFirstChild(tileServiceIter.Current.Select(“SamplesPerTile”)));
dataFormat = getInnerTextFromFirstChild(tileServiceIter.Current.Select(“DataFormat”));
fileExtension = getInnerTextFromFirstChild(tileServiceIter.Current.Select(“FileExtension”));
compressionType = getInnerTextFromFirstChild(tileServiceIter.Current.Select(“CompressonType”));
//根据配置信息创建TerrainTileService对象和TerrainAccessor对象
TerrainTileService tts = new TerrainTileService(
serverUrl,
dataSetName,
levelZeroTileSizeDegrees,
(int)samplesPerTile,
fileExtension,
(int)numberLevels,
Path.Combine(cacheDirectory, terrainAccessorName),
World.Settings.TerrainTileRetryInterval,
dataFormat);
TerrainAccessor newTerrainAccessor = new NltTerrainAccessor(
terrainAccessorName,
west,
south,
east,
north,
tts,
higerResolutionSubsets);
terrainAccessorList.Add(newTerrainAccessor);
}
//TODO: Add Floating point terrain Accessor code
//TODO: Add WMSAccessor code and make it work in TerrainAccessor (which it currently doesn't)
}
if(terrainAccessorList.Count > 0)
{
return (TerrainAccessor[])terrainAccessorList.ToArray(typeof(TerrainAccessor));
}
else
{
return null;
}
}
再来看看DEM的配置在哪里和XML内容吧
路径:
C:Program FilesNASAWorld Wind 1.4ConfigEarth.xml
配置内容:
?xml version=“1.0” encoding=“UTF-8”?>
接着上面的讲NltTerrainAccessor类76行代码GetElevationAt(double latitude, double longitude, double targetSamplesPerDegree)方法。
获取特定点的高程值
///
/// Get terrain elevation at specified location.
///
/// Latitude in decimal degrees.
/// Longitude in decimal degrees.
///
///
public override float GetElevationAt(double latitude, double longitude, double targetSamplesPerDegree)
{
try
{
if (m_terrainTileService == null || targetSamplesPerDegree < World.Settings.MinSamplesPerDegree)
return 0;
if (m_higherResolutionSubsets != null)
{
foreach (TerrainAccessor higherResSub in m_higherResolutionSubsets)
{
if (latitude > higherResSub.South && latitude < higherResSub.North &&
longitude > higherResSub.West && longitude < higherResSub.East)
{
return higherResSub.GetElevationAt(latitude, longitude, targetSamplesPerDegree);
}
}
}
//自己可以看看如何完成TerrainTile的初始化构建的
TerrainTile tt = m_terrainTileService.GetTerrainTile(latitude, longitude, targetSamplesPerDegree);
TerrainTileCacheEntry ttce = (TerrainTileCacheEntry)m_tileCache[tt.TerrainTileFilePath];
if (ttce == null)
{
ttce = new TerrainTileCacheEntry(tt);
AddToCache(ttce);
}
if (!ttce.TerrainTile.IsInitialized)
ttce.TerrainTile.Initialize();
ttce.LastAccess = DateTime.Now;
//获取高程值
return ttce.TerrainTile.GetElevationAt(latitude, longitude);
}
catch (Exception)
{
}
return 0;
}
上面获取高程值的关键:TerrainTile类的330行的GetElevationAt(double latitude, double longitude)方法
public float GetElevationAt(double latitude, double longitude)
{
try
{
double deltaLat = North - latitude;
double deltaLon = longitude - West;
//TileSizeDegrees为当前级别下瓦片的度数大小
//计算方法:158行tile.TileSizeDegrees = m_levelZeroTileSizeDegrees * Math.Pow(0.5, tile.TargetLevel);
//注意思考:SamplesPerTile-1为什么是减去1?传进来的SamplesPerTile=43而不是44?
//如果传入的是44,这里应该减2
double df2 = (SamplesPerTile-1) / TileSizeDegrees;
float lat_pixel = (float)(deltaLat * df2);
float lon_pixel = (float)(deltaLon * df2);
//这里是将点,近似成包含点的最小正方形(经纬度取整)
int lat_min = (int)lat_pixel;
int lat_max = (int)Math.Ceiling(lat_pixel);
int lon_min = (int)lon_pixel;
int lon_max = (int)Math.Ceiling(lon_pixel);
if(lat_min >= SamplesPerTile)
lat_min = SamplesPerTile - 1;
if(lat_max >= SamplesPerTile)
lat_max = SamplesPerTile - 1;
if(lon_min >= SamplesPerTile)
lon_min = SamplesPerTile - 1;
if(lon_max >= SamplesPerTile)
lon_max = SamplesPerTile - 1;
if(lat_min < 0)
lat_min = 0;
if(lat_max < 0)
lat_max = 0;
if(lon_min < 0)
lon_min = 0;
if(lon_max < 0)
lon_max = 0;
float delta = lat_pixel - lat_min;
//根据外矩形四顶点的经纬度分别插值计算中间线的高程
float westElevation =
ElevationData[lon_min, lat_min]*(1-delta) +
ElevationData[lon_min, lat_max]*delta;
float eastElevation =
ElevationData[lon_max, lat_min]*(1-delta) +
ElevationData[lon_max, lat_max]*delta;
//利用插值计算点的高程值
delta = lon_pixel - lon_min;
float interpolatedElevation =
westElevation*(1-delta) +
eastElevation*delta;
return interpolatedElevation;
}
catch
{
}
return 0;
}
public float[,] ElevationData就是存放当前瓦片所有样本点高程值的数值,
这是通过Initialize()中读取DEM(.bil)文件来获取的。
读取BIL文件高程数据
///
/// This method initializes the terrain tile add switches to
/// Initialize floating point/int 16 tiles
///
public void Initialize()
{
if(IsInitialized)
return;
if(!File.Exists(TerrainTileFilePath))
{
// Download elevation
if(request==null)
{
using( request = new TerrainDownloadRequest(this, m_owner, Row, Col, TargetLevel) )
{
request.SaveFilePath = TerrainTileFilePath;
request.DownloadInForeground();
}
}
}
if(ElevationData==null)
ElevationData = new float[SamplesPerTile, SamplesPerTile];
if(File.Exists(TerrainTileFilePath))
{
// Load elevation file
try
{
// TerrainDownloadRequest's FlagBadTile() creates empty files
// as a way to flag “bad” terrain tiles.
// Remove the empty 'flag' files after preset time.
try
{
FileInfo tileInfo = new FileInfo(TerrainTileFilePath);
if(tileInfo.Length == 0)
{
TimeSpan age = DateTime.Now.Subtract( tileInfo.LastWriteTime );
if(age < m_owner.TerrainTileRetryInterval)
{
// This tile is still flagged bad
IsInitialized = true;
}
else
{
// remove the empty 'flag' file
File.Delete(TerrainTileFilePath);
}
return;
}
}
catch
{
// Ignore any errors in the above block, and continue.
// For example, if someone had the empty 'flag' file
// open, the delete would fail.
}
//读取BIL文件数据的关键代码,可以被我们借鉴使用
using( Stream s = File.OpenRead(TerrainTileFilePath))
{
BinaryReader reader = new BinaryReader(s);
if(m_owner.DataType==“Int16”)
{
for(int y = 0; y < SamplesPerTile; y++)
for(int x = 0; x < SamplesPerTile; x++)
ElevationData[x,y] = reader.ReadInt16();
}
if(m_owner.DataType==“Float32”)
{
for(int y = 0; y < SamplesPerTile; y++)
for(int x = 0; x < SamplesPerTile; x++)
{
ElevationData[x,y] = reader.ReadSingle();
}
}
IsInitialized = true;
IsValid = true;
}
return;
}
catch(IOException)
{
// If there is an IO exception when reading the terrain tile,
// then either something is wrong with the file, or with
// access to the file, so try and remove it.
try
{
File.Delete(TerrainTileFilePath);
}
catch(Exception ex)
{
throw new ApplicationException(String.Format(“Error while trying to delete corrupt terrain tile {0}”, TerrainTileFilePath), ex);
}
}
catch(Exception ex)
{
// Some other type of error when reading the terrain tile.
throw new ApplicationException(String.Format(“Error while trying to read terrain tile {0}”, TerrainTileFilePath), ex);
}
}
}
另注:SRTM的高程数据存放路径如下图:(DEM跟影像也是分级存放的,存放方式一致)
至此,如何加载DEM数据创建网格的过程已经分析完了。
接下来,继续分析QuadTile.cs中CreateElevatedMesh()和Render方法,内容主要是DirectX编程,稍后添加……
篇2:WorldWind系列十四:DEM数据加载和应用――以SRTM为例(上)
DEM应用在WW的三维表现中占有很重要的位置,跟影像数据同等重要!幸好影像和DEM的加载和处理原理上几乎一致,对基于WW搞GIS三维开发来说是件好事,理解好任何一种,另一种触类旁通!前一篇,主要从功能上做了简单入门介绍,该篇将从代码级别分析WW内置的SRTM的DEM数据加载和应用,下一篇讲从二次开发角度上讲解如何处理、配置自己的影像和DEM数据,呵呵,因为DEM部分很重要,且是放假期间我也有时间,争取篇篇精彩!
两个缩写词介绍:因为这两个缩写词常出现,知道是什么缩写,就不觉得神秘啦!
SRTM:The Shuttle Radar Topography Mission (SRTM) obtained elevation data on a near-global scale to generate the most complete high-resolution digital topographic database of Earth. SRTM consisted of a specially modified radar system that flew onboard the Space Shuttle Endeavour during an 11-day mission in February of .
NLT:NASA Learning Technologies.
我从BMNG.cs为例入手研究DEM的使用,当然研究瓦片影像也该从此入手,但,今天影像不是我们关注的重点。现在正式步入主题,跟我一起分析和学习代码吧!
BMNG.cs类144行构造函数中代码,
WorldWind.NltImageStore imageStore = new WorldWind.NltImageStore(String.Format(“bmng.topo.{0:D2}”, i + 1), “worldwind25.arc.nasa.gov/tile/tile.aspx”);
imageStore.DataDirectory = null;
imageStore.LevelZeroTileSizeDegrees = 36.0;
imageStore.LevelCount = 5;
imageStore.ImageExtension = “jpg”;
imageStore.CacheDirectory = String.Format(“{0}\BMNG\{1}”, m_WorldWindow.Cache.CacheDirectory, String.Format(“BMNG (Shaded) Tiled - {0}.2004”, i + 1));
ias = new WorldWind.ImageStore[1];
ias[0] = imageStore;
m_QuadTileLayers[0, i] = new WorldWind.Renderable.QuadTileSet(
String.Format(“Tiled - {0}.2004”, i + 1),
m_WorldWindow.CurrentWorld,
0,
90, -90, -180, 180,
true,
ias);
BMNG中的NltImageStore.cs、QuadTileSet类。这是我们关注的对象。
QuadTileSet继承自RenderableObject,是要绘制渲染的对象类。
关注它的562行Update方法、517行Initialize()方法、 701行Render()方法。
Update()方法
QuadTileSet的Update()方法
public override void Update(DrawArgs drawArgs)
{
if (!isInitialized)
Initialize(drawArgs);
if (m_effectPath != null && m_effect == null)
{
string errs = string.Empty;
m_effect = Effect.FromFile(DrawArgs.Device, m_effectPath, null, “”, ShaderFlags.None, m_effectPool, out errs);
if (errs != null && errs != string.Empty)
{
Log.Write(Log.Levels.Warning, “Could not load effect ” + m_effectPath + “: ” + errs);
Log.Write(Log.Levels.Warning, “Effect has been disabled.”);
m_effectPath = null;
m_effect = null;
}
}
if (ImageStores[0].LevelZeroTileSizeDegrees < 180)
{
// Check for layer outside view
double vrd = DrawArgs.Camera.ViewRange.Degrees;
double latitudeMax = DrawArgs.Camera.Latitude.Degrees + vrd;
double latitudeMin = DrawArgs.Camera.Latitude.Degrees - vrd;
double longitudeMax = DrawArgs.Camera.Longitude.Degrees + vrd;
double longitudeMin = DrawArgs.Camera.Longitude.Degrees - vrd;
if (latitudeMax < m_south || latitudeMin > m_north || longitudeMax < m_west || longitudeMin > m_east)
return;
}
if (DrawArgs.Camera.ViewRange * 0.5f >
Angle.FromDegrees(TileDrawDistance * ImageStores[0].LevelZeroTileSizeDegrees))
{
lock (m_topmostTiles.SyncRoot)
{
foreach (QuadTile qt in m_topmostTiles.Values)
qt.Dispose();
m_topmostTiles.Clear();
ClearDownloadRequests();
}
return;
}
//知识点,可以看看,如何计算不可见瓦片的算法。
RemoveInvisibleTiles(DrawArgs.Camera);
下面主要是如何计算和加载瓦片式影像的,是重点,但不是这次的重点。
try
{
//根据Camera所对的中心经纬度,计算中心点的行列号
int middleRow = MathEngine.GetRowFromLatitude(DrawArgs.Camera.Latitude, ImageStores[0].LevelZeroTileSizeDegrees);
int middleCol = MathEngine.GetColFromLongitude(DrawArgs.Camera.Longitude, ImageStores[0].LevelZeroTileSizeDegrees);
//根据行列号,反推瓦片的四点对应的经度或纬度
double middleSouth = -90.0f + middleRow * ImageStores[0].LevelZeroTileSizeDegrees;
double middleNorth = -90.0f + middleRow * ImageStores[0].LevelZeroTileSizeDegrees + ImageStores[0].LevelZeroTileSizeDegrees;
double middleWest = -180.0f + middleCol * ImageStores[0].LevelZeroTileSizeDegrees;
double middleEast = -180.0f + middleCol * ImageStores[0].LevelZeroTileSizeDegrees + ImageStores[0].LevelZeroTileSizeDegrees;
double middleCenterLat = 0.5f * (middleNorth + middleSouth);
double middleCenterLon = 0.5f * (middleWest + middleEast);
//这里存在一个算法,由中心瓦片框,向四周扩散地找相邻的瓦片矩形框。
//有兴趣的网友可以看一下,根据算法画出图来就好理解啦。(我感觉该算法对以后开发会有用的)
int tileSpread = 4;
for (int i = 0; i < tileSpread; i++)
{
for (double j = middleCenterLat - i * ImageStores[0].LevelZeroTileSizeDegrees; j < middleCenterLat + i * ImageStores[0].LevelZeroTileSizeDegrees; j += ImageStores[0].LevelZeroTileSizeDegrees)
{
for (double k = middleCenterLon - i * ImageStores[0].LevelZeroTileSizeDegrees; k < middleCenterLon + i * ImageStores[0].LevelZeroTileSizeDegrees; k += ImageStores[0].LevelZeroTileSizeDegrees)
{
//根据经纬度和tileSize来计算行列号,这里LevelZeroTileSizeDegrees为第0层的瓦片大小为36度,瓦片总个数为50片
int curRow = MathEngine.GetRowFromLatitude(Angle.FromDegrees(j), ImageStores[0].LevelZeroTileSizeDegrees);
int curCol = MathEngine.GetColFromLongitude(Angle.FromDegrees(k), ImageStores[0].LevelZeroTileSizeDegrees);
long key = ((long)curRow << 32) + curCol;
//如果集合m_topmostTiles已经存在QuadTile,则更新QuadTile
QuadTile qt = (QuadTile)m_topmostTiles[key];
if (qt != null)
{
qt.Update(drawArgs);
continue;
}
// Check for tile outside layer boundaries,获取外边框四点经度或纬度坐标
double west = -180.0f + curCol * ImageStores[0].LevelZeroTileSizeDegrees;
if (west > m_east)
continue;
double east = west + ImageStores[0].LevelZeroTileSizeDegrees;
if (east < m_west)
continue;
double south = -90.0f + curRow * ImageStores[0].LevelZeroTileSizeDegrees;
if (south > m_north)
continue;
double north = south + ImageStores[0].LevelZeroTileSizeDegrees;
if (north < m_south)
continue;
//结合中不存在,创建新的QuadTile
qt = new QuadTile(south, north, west, east, 0, this);
//判断新的QuadTile是否在可视区域中。(可以关注一下:Intersects()方法判断矩形框相交)
if (DrawArgs.Camera.ViewFrustum.Intersects(qt.BoundingBox))
{
lock (m_topmostTiles.SyncRoot)
m_topmostTiles.Add(key, qt);
//调用QuadTile的Update()方法
qt.Update(drawArgs);
}
}
}
}
}
catch (System.Threading.ThreadAbortException)
{
}
catch (Exception caught)
{
Log.Write(caught);
}
}
Render()方法的关键代码为:
device.VertexFormat = CustomVertex.PositionNormalTextured.Format;
foreach (QuadTile qt in m_topmostTiles.Values)
qt.Render(drawArgs);
从上面可以看出,QuadTileSet可看作是QuadTile的集合,真正实现更新和渲染的是QuadTile对象。里面有影像的加载和渲染绘制,也有DEM的渲染绘制。
我们先看看QuadTile.cs 中Update()方法:
QuadTile的Update()代码
public virtual void Update(DrawArgs drawArgs)
{
if (m_isResetingCache)
return;
try
{
double tileSize = North - South;
if (!isInitialized)
{
if (DrawArgs.Camera.ViewRange * 0.5f < Angle.FromDegrees(QuadTileSet.TileDrawDistance * tileSize)
&& MathEngine.SphericalDistance(CenterLatitude, CenterLongitude,
DrawArgs.Camera.Latitude, DrawArgs.Camera.Longitude) < Angle.FromDegrees(QuadTileSet.TileDrawSpread * tileSize * 1.25f)
&& DrawArgs.Camera.ViewFrustum.Intersects(BoundingBox)
)
Initialize();
}
if (isInitialized && World.Settings.VerticalExaggeration != verticalExaggeration || m_CurrentOpacity != QuadTileSet.Opacity ||
QuadTileSet.RenderStruts != renderStruts)
{
//创建瓦片网格(重点)
CreateTileMesh();
}
if (isInitialized)
{
//判断进入下一层的条件(ViewRange角度、球面距离、可视区域)
if (DrawArgs.Camera.ViewRange < Angle.FromDegrees(QuadTileSet.TileDrawDistance * tileSize)
&& MathEngine.SphericalDistance(CenterLatitude, CenterLongitude,
DrawArgs.Camera.Latitude, DrawArgs.Camera.Longitude) < Angle.FromDegrees(QuadTileSet.TileDrawSpread * tileSize)
&& DrawArgs.Camera.ViewFrustum.Intersects(BoundingBox)
)
{
if (northEastChild == null || northWestChild == null || southEastChild == null || southWestChild == null)
{
//计算下一级别的四个子瓦片(重点,稍后一起看看)
ComputeChildren(drawArgs);
}
if (northEastChild != null)
{
northEastChild.Update(drawArgs);
}
if (northWestChild != null)
{
northWestChild.Update(drawArgs);
}
if (southEastChild != null)
{
southEastChild.Update(drawArgs);
}
if (southWestChild != null)
{
southWestChild.Update(drawArgs);
}
}
else
{
if (northWestChild != null)
{
northWestChild.Dispose();
northWestChild = null;
}
if (northEastChild != null)
{
northEastChild.Dispose();
northEastChild = null;
}
if (southEastChild != null)
{
southEastChild.Dispose();
southEastChild = null;
}
if (southWestChild != null)
{
southWestChild.Dispose();
southWestChild = null;
}
}
}
if (isInitialized)
{
if (DrawArgs.Camera.ViewRange / 2 > Angle.FromDegrees(QuadTileSet.TileDrawDistance * tileSize * 1.5f)
|| MathEngine.SphericalDistance(CenterLatitude, CenterLongitude, DrawArgs.Camera.Latitude, DrawArgs.Camera.Longitude) > Angle.FromDegrees(QuadTileSet.TileDrawSpread * tileSize * 1.5f))
{
if (Level != 0 || (Level == 0 && !QuadTileSet.AlwaysRenderBaseTiles))
this.Dispose();
}
}
}
catch
{
}
}
创建下一级的四个瓦片的方法:(可以被我们重用)
ComputeChildren(DrawArgs drawArgs)
public virtual void ComputeChildren(DrawArgs drawArgs)
{
//判断是否是最高级别
if (Level + 1 >= QuadTileSet.ImageStores[0].LevelCount)
return;
//计算瓦片的中点经纬度
double CenterLat = 0.5f * (South + North);
double CenterLon = 0.5f * (East + West);
if (northWestChild == null)
northWestChild = ComputeChild(CenterLat, North, West, CenterLon);
if (northEastChild == null)
northEastChild = ComputeChild(CenterLat, North, CenterLon, East);
if (southWestChild == null)
southWestChild = ComputeChild(South, CenterLat, West, CenterLon);
if (southEastChild == null)
southEastChild = ComputeChild(South, CenterLat, CenterLon, East);
}
ComputeChild(double childSouth, double childNorth, double childWest, double childEast)
///
/// Returns the QuadTile for specified location if available.
/// Tries to queue a download if not available.
///
///
private QuadTile ComputeChild(double childSouth, double childNorth, double childWest, double childEast)
{
QuadTile child = new QuadTile(
childSouth,
childNorth,
childWest,
childEast,
this.Level + 1,
QuadTileSet);
return child;
}
QuadTile.cs 中的CreateTileMesh()方法用来创建瓦片格网的,分别在Initialize() 、Update()方法中调用,
410行 这里调用的CreateElevatedMesh();是添加DEM数据创建高程格网的。
///
/// Builds flat or terrain mesh for current tile
///
public virtual void CreateTileMesh()
{
verticalExaggeration = World.Settings.VerticalExaggeration;
m_CurrentOpacity = QuadTileSet.Opacity;
renderStruts = QuadTileSet.RenderStruts;
if (QuadTileSet.TerrainMapped && Math.Abs(verticalExaggeration) > 1e-3)
//创建具有高程值的格网(今天要关注的)
CreateElevatedMesh();
else
//创建没有高程值的平面格网
CreateFlatMesh();
}
591行CreateElevatedMesh()
创建具有高程值的格网
///
/// Build the elevated terrain mesh
///
protected virtual void CreateElevatedMesh()
{
isDownloadingTerrain = true;
//vertexCountElevated值为40;向四周分别扩充一个样本点
// Get height data with one extra sample around the tile
double degreePerSample = LatitudeSpan / vertexCountElevated;
//获取具有高程值的TerrainTile对象(这是最关键部分,深入分析)
TerrainTile tile = QuadTileSet.World.TerrainAccessor.GetElevationArray(North + degreePerSample, South - degreePerSample, West - degreePerSample, East + degreePerSample, vertexCountElevated + 3);
float[,] heightData = tile.ElevationData;
int vertexCountElevatedPlus3 = vertexCountElevated / 2 + 3;
int totalVertexCount = vertexCountElevatedPlus3 * vertexCountElevatedPlus3;
northWestVertices = new CustomVertex.PositionNormalTextured[totalVertexCount];
southWestVertices = new CustomVertex.PositionNormalTextured[totalVertexCount];
northEastVertices = new CustomVertex.PositionNormalTextured[totalVertexCount];
southEastVertices = new CustomVertex.PositionNormalTextured[totalVertexCount];
double layerRadius = (double)QuadTileSet.LayerRadius;
// Calculate mesh base radius (bottom vertices)
// Find minimum elevation to account for possible bathymetry
float minimumElevation = float.MaxValue;
float maximumElevation = float.MinValue;
foreach (float height in heightData)
{
if (height < minimumElevation)
minimumElevation = height;
if (height > maximumElevation)
maximumElevation = height;
}
minimumElevation *= verticalExaggeration;
maximumElevation *= verticalExaggeration;
if (minimumElevation > maximumElevation)
{
// Compensate for negative vertical exaggeration
minimumElevation = maximumElevation;
maximumElevation = minimumElevation;
}
double verlap = 500 * verticalExaggeration; // 500m high tiles
// Radius of mesh bottom grid
meshBaseRadius = layerRadius + minimumElevation - overlap;
CreateElevatedMesh(ChildLocation.NorthWest, northWestVertices, meshBaseRadius, heightData);
CreateElevatedMesh(ChildLocation.SouthWest, southWestVertices, meshBaseRadius, heightData);
CreateElevatedMesh(ChildLocation.NorthEast, northEastVertices, meshBaseRadius, heightData);
CreateElevatedMesh(ChildLocation.SouthEast, southEastVertices, meshBaseRadius, heightData);
BoundingBox = new BoundingBox((float)South, (float)North, (float)West, (float)East,
(float)layerRadius, (float)layerRadius + 10000 * this.verticalExaggeration);
QuadTileSet.IsDownloadingElevation = false;
// Build common set of indexes for the 4 child meshes
int vertexCountElevatedPlus2 = vertexCountElevated / 2 + 2;
vertexIndexes = new short[2 * vertexCountElevatedPlus2 * vertexCountElevatedPlus2 * 3];
int elevated_idx = 0;
for (int i = 0; i < vertexCountElevatedPlus2; i++)
{
for (int j = 0; j < vertexCountElevatedPlus2; j++)
{
vertexIndexes[elevated_idx++] = (short)(i * vertexCountElevatedPlus3 + j);
vertexIndexes[elevated_idx++] = (short)((i + 1) * vertexCountElevatedPlus3 + j);
vertexIndexes[elevated_idx++] = (short)(i * vertexCountElevatedPlus3 + j + 1);
vertexIndexes[elevated_idx++] = (short)(i * vertexCountElevatedPlus3 + j + 1);
vertexIndexes[elevated_idx++] = (short)((i + 1) * vertexCountElevatedPlus3 + j);
vertexIndexes[elevated_idx++] = (short)((i + 1) * vertexCountElevatedPlus3 + j + 1);
}
}
calculate_normals(ref northWestVertices, vertexIndexes);
calculate_normals(ref southWestVertices, vertexIndexes);
calculate_normals(ref northEastVertices, vertexIndexes);
calculate_normals(ref southEastVertices, vertexIndexes);
isDownloadingTerrain = false;
}
596行TerrainTile tile = QuadTileSet.World.TerrainAccessor.GetElevationArray(North + degreePerSample, South - degreePerSample, West - degreePerSample, East + degreePerSample, vertexCountElevated + 3);
获取样本点的高程值数组。
篇3:WorldWind系列十三:地形数据(DEM)加载和应用(入门篇)
学习WW中DEM的加载和应用对于基于WW搞三维GIS插件开发很重要,我一直也想关注和搜集相关学习资料,之前没有开始研究它,主要是自己没能在 WW看到高程应用功能,感觉没法切入。我昨天下午和今天上午的时间就花在找研究切入点啦!实质上就是找如何在WW查看高程的功能。(现在回想一下,感觉浪费时间了,还是因为我对WW的功能没能完全知道)
我在开始学习DEM加载和应用前,我主要参看了CSDN上的博文——《庆贺,绘制出World Wind的LOD地形网格》(blog.csdn.net/paul_xj/archive//08/29/1763585.aspx),相信研究WW的人都应该看过这篇和他的三篇学习总结。我也看过研究过好多遍,结合自己的学习,每遍拜读都有些收获。他的文章关注度很高,绝对是WW初学者的起航灯塔。但是,我对上面提到的《绘制出World Wind的LOD地形网格》几乎要全文否定。我不希望网友以该文为标准来学习WW的地形网格(即DEM加载应用),因为我原本也是很相信他说的,按他说的去做的,事实不是那样的,相信他也是刚入门时写下的,很多DirectX的东西理解也不是很深刻的。
所谓的绘制出LOD地形网格有问题!怎么能将DirectX三维渲染与GIS中DEM混为一团?!地形图包括地物和地貌。而地貌主要体现在等高线上,在三维中体现为DEM应用(数字高程模型)!上面博客中讲到的构建地形网格只是将DirectX的面渲染改为线渲染,这还是平面级别的,根本没有体现高程,怎么就是地形网格啦?!从DirectX三维技术角度讲,也是有问题的:DX中面渲染和线渲染存储点的方式是不同的,因为WW中使用LOD模型各层要渲染的面很多且相邻,所以简单更改渲染方式没能看出影响。但如果你绘制单个面然后更改为线性渲染,就会看出问题啦!这还是平面级别上面,面渲染改为线渲染会出现问题,如果是三维物体(立方体)如果简单改为线渲染,问题更明显!(你学过DirectX后,试一下就知道啦!)
至于博客中说到的:“按下‘Ctrl+W’出来的网格,是什么空中网格”,只是简单地操作,放大后看到后面是“天空”,就认为是什么空中网格,这真是典型的形而上学啦!真正学习过三维开发的人都会知道:为了提高效率,三维渲染只是渲染可视的前一面,不被看到的面统统隐去(不渲染)。大家放大操作后看到“天空”而不是又一层网格,就是因为后面的网格不可视。‘Ctrl+W’出来的网格,是个空心球体框架。只是更改DX三维球体渲染时 FillMode而已。
WorldWindow.cs中响应“CRL+W”的处理代码:
1351行:
// Control key down
else if (e.Control)
{
switch (e.KeyCode)
{
case Keys.D:
this.showDiagnosticInfo = !this.showDiagnosticInfo;
return true;
case Keys.W:
renderWireFrame. = !renderWireFrame;
return true;
}
}
然后,看Render方法,代码行号776
// Set fill mode
if (renderWireFrame)
m_Device3d.RenderState.FillMode = FillMode.WireFrame;
else
m_Device3d.RenderState.FillMode = FillMode.Solid;
所以看到的是球体框架而不是实心球,
压根没有空中网格一说!
这是文章中最后的截图,貌似很像他所说的地形网格,可能有网友会据此驳斥我。首先,在上面我已经从DirectX渲染技术角度上,我已经说明了这不是地形格网。其次,图中能表现出地形的高低起伏,是因为有地表面渲染中有DEM数据的加载和应用(这是关键)。我认为地形网格其实很简单,将地表面的渲染FillMode = FillMode.WireFrame;(注意:不是球面渲染的FillMode)。
我一向主张学习WW要从功能入手,DEM学习也应该从功能入手,现在看看WW中体现DEM功能:(参看www.help2go.com/Tutorials/Software_Applications/View_the_world_with_NASA_Worldwind.html)
Zoom in further,and Worldwind will download higher resolution images,giving you greater and greater detail. Now,hold down the right-mouse button and move your mouse down a bit -- your view will rotate a bit,so rather than looking head-on at the city from above,you'll be looking at it from an angle.
按住鼠标右键,移动鼠标一点,你就可以从一个角度看地貌了,而不是垂直向下看啦。
可能很多网友已经知道如何看到上面的效果啦!可是我之前不知道,所以一直困惑没找到切入点。我的WW学习很强调从功能入手分析代码学习代码。
上面的分析,算是DEM加载和应用入门篇吧!因为我自己就是走过这个阶段的,希望你也有所收获。然后下一篇,我们从代码基本分析DEM数据的加载和使用。
另附:(需要了解的两个知识点)
LOD是Level of Detail的缩写,意为层次细节度,技术指根据物体模型的节点在显示环境中所处的位置和重要度,决定物体渲染的资源分配,降低非重要物体的面数和细节度,从而获得高效率的渲染运算。
DDS(DirectDraw Surface)文件格式是微软为DirectX开发的一种图片格式,它是可以使用类似S3TC标准提供的一种压缩纹理格式. DDS文件可以有很多不同的格式,可以含有 Mipmap 或不保存 Mipmap 信息,可以使用压缩或非压缩的像素格式,常见的压缩数据方式有 DXTn(DXT1~DXT5),DDS文件的结构见MSDN: DDS File Reference. 参看:www.csinx.org/IBLog/article.asp?id=8
篇4:利用数字高程模型(DEM)分析土地利用现状-以长泰县为例
利用数字高程模型(DEM)分析土地利用现状-以长泰县为例
以DEM为基础数据,通过水文分析将研究区自动分割成28个小流域,并分别提取各个小流域的沟壑密度、平均坡度、平均坡长、起伏度等地形因子,建立地形因子间的回归模型,利用聚类分析将小流域划分为6种类型,并采用C5.0算法发现各个类型的'基本特征,该文还进一步探讨了地形与土地利用分布的关系.
作 者:陈小瑜 CHEN Xiao-yu 作者单位:泉州师范学院资源与环境科学学院,福建,泉州,36 刊 名:河北林业科技 英文刊名:THE JOURNAL OF HEBEI FORESTRY SCIENCE AND TECHNOLOGY 年,卷(期): “”(4) 分类号:P208 关键词:DEM 小流域 地形因子 聚类分析篇5:DEM地形分析在山区地质灾害研究中的应用-以云南省漾濞县为例
DEM地形分析在山区地质灾害研究中的应用-以云南省漾濞县为例
摘要:云南省漾濞县具有典型的山地特点,每年其境内发生的地质灾害都给人民生命和财产造成了极大的损失.在漾濞县的地质灾害调查中,通过“3S”技术的应用,建立了漾濞县的数字高程模型,进行了基于ArcGIS的.地形分析,提取出了坡度和坡向等重要的地形因子.通过研究发现:坡度是漾濞县地质灾害频发的最主要控制因素,漾濞江及其支流上游的滑坡和崩塌为泥石流的发生提供了物源基础;同时阳坡是地质灾害发生的主要坡向,滑坡和崩塌等灾害发生频繁.最后,制作了漾濞县坡度、坡向分析图,指出了漾濞县较易发生地质灾害的地区,为其他山地地区地质灾害研究提供了一种借鉴模式.作 者:郑著彬 任静丽 ZHENG Zhu-bin REN Jing-li 作者单位:郑著彬,ZHENG Zhu-bin(赣南师范学院,历史文化与旅游学院,江西,赣州,341000)任静丽,REN Jing-li(赣南师范学院教育科学学院,江西,赣州,341000)
期 刊:云南地理环境研究 Journal:YUNNAN GEOGRAPHIC ENVIRONMENT RESEARCH 年,卷(期):, 22(2) 分类号:X87 关键词:DEM 地形分析 地质灾害 漾濞县篇6:教学网站数据XML建模-以学习者信息为例
教学网站数据XML建模-以学习者信息为例
使用XML技术设计和建设基于网络的应用系统,是未来软件技术的重要发展方向.讨论基于XML文档的教学网站建设,以学习者信息模块为例,是一次用XML技术进行网站建设的`有意义的尝试.
作 者:谭军 程丽玲 作者单位:广西百色学院,数学与计算机信息工程系,广西,百色,533000 刊 名:硅谷 英文刊名:SILICON VALLEY 年,卷(期): “”(12) 分类号:G43 关键词:XML 数据模型 数据定义篇7:耕地潜力分析与应用-以瓦房店市为例
耕地潜力分析与应用-以瓦房店市为例
随着经济的.发展,人口逐渐增多,城镇规模进一步扩大,搞好耕地资泺保护变的尤为重要.土地利用具有过渡性、多样性、动态性、集约性与非集约性的特征,当前面临耕地侵占严重、土地退化、土地利用空间结构不合理等突出问题,城市边缘区土地利用强度大,耕地斑块破碎.本文利用地理信息系统(GIS)等先进技术手段,对瓦房店市耕地的相关属性进行统计井建立数据库,通过坡度级、土地利用数据库,土壤的空间数据等,分析区域耕地潜力的特征,为区域耕地保护和生态环境保护提供空间决策支持.
作 者: 作者单位: 刊 名:科技创新导报 英文刊名:SCIENCE AND TECHNOLOGY INNOVATION HERALD 年,卷(期):2009 “”(25) 分类号:P2 关键词:地理信息系统 耕地评价 潜力分析 应用篇8:地形因子与DEM分辨率关系的初步研究-以蒙阴县为例
地形因子与DEM分辨率关系的初步研究-以蒙阴县为例
以蒙阴县为研究区探讨坡度、坡长、坡向、汇水面积随DEM分辨率的变化.基于1:5万地形图利用ANUDEM建立多种分辨率的DEM.分辨率水平包括10,15,20,25,30,40,50,75,100,150,200,250,300,400,500,750,1000 m,基于上述DEM提取坡度、坡长、坡向、汇水面积,探讨其随分辨率的.变化规律.结果表明:随分辨率降低,平均坡度呈对数函数衰减,坡度向低坡度范围集中,平均坡长增大且在高分辨率范围内较剧烈,坡长向较长坡长范围集中,分辨率200 m以坡向统计信息受分辨率降低的影响小于10%.随DEM分辨率降低平均汇水面积呈线性增大,且不同汇水面积等级所占面积的变化规律不同.
作 者:王峰 王春梅 WANG Feng WANG Chun-mei 作者单位:中国科学院水利部水土保持研究所,陕西,杨陵,712100 刊 名:水土保持研究 ISTIC PKU英文刊名:RESEARCH OF SOIL AND WATER CONSERVATION 年,卷(期): 16(4) 分类号:P962 TP79 关键词:DEM分辨率 坡度 坡向 坡长 汇水面积篇9:基于MAPGIS的土壤系列图数字化研究-以莱西市为例
基于MAPGIS的土壤系列图数字化研究-以莱西市为例
文章以MAPGIS为工作平台,以莱西市为例,探讨了以野外调查采样分析和土壤普查资料为依据,进行土壤系列图数字化制作的`流程和技术要点,该研究有利于提高地图数字化效率和数字地图质量.
作 者:陈国玉 李旭霖 崔德杰 任洪春 耿志军 Chen Guoyu Li Xulin Cui Dejie Ren Hongchun Geng Zhijun 作者单位:陈国玉,李旭霖,崔德杰,Chen Guoyu,Li Xulin,Cui Dejie(青岛农业大学,资源与环境学院,山东,青岛,266109)任洪春,耿志军,Ren Hongchun,Geng Zhijun(莱西市土壤肥料工作站,山东,莱西,266600)
刊 名:太原师范学院学报(自然科学版) 英文刊名:JOURNAL OF TAIYUAN NORMAL UNIVERSITY(NATURAL SCIENCE EDITION) 年,卷(期):2009 8(1) 分类号:S159-3 关键词:土壤系列图 数字化 MAPGIS 莱西市篇10:选择实验的理论和应用-以中国退耕还林为例
选择实验的理论和应用-以中国退耕还林为例
摘要:选择实验的理论基础来自于要素价值理论和随机效用理论,既是一种对环境资源进行价值评估的重要方法,也是揭示研究对象政策偏好的'重要手段.利用该方法不仅可以通过对支付意愿或接受赔偿意愿进行评估,进而对一项政策的各个要素的相对重要性进行排序,还可以得到因多个政策要素同时改变时导致的价值变化,从而有助于政策制订者对政策进行调整.本文在评述选择实验的基本理论和方法的基础上,以中国正在实施的退耕还林工程为例,利用选择实验方法对该政策进行了评估,并且基于研究结果对未来的政策改进提出了相关建议.作 者:翟国梁 张世秋 Kontoleon Andreas Grosjean Pauline ZHAI Guoliang ZHANG Shiqiu Kontoleon Andreas Grosjean Pauline 作者单位:翟国梁,张世秋,ZHAI Guoliang,ZHANG Shiqiu(北京大学环境学院,北京,100871)Kontoleon Andreas,Kontoleon Andreas(剑桥大学土地经济系,剑桥,CB3 9EP)
Grosjean Pauline,Grosjean Pauline(伦敦大学学院经济系,伦敦,WC1E 6BT)
期 刊:北京大学学报(自然科学版) ISTICPKU Journal:ACTA SCIENTIARUM NATURALIUM UNIVERSITATIS PEKINENSIS 年,卷(期):2007, 43(2) 分类号:X1 关键词:退耕还林 选择模型 选择实验 环境政策★景观生态学在植被监测中的应用-以塔里木河中游英巴扎地区为例
文档为doc格式